<u>N26 – THE MOLE RATIO AND</u> <u>Stoichiometry</u>

<u>N26 – THE MOLE RATIO AND</u> <u>Stoichiometry</u>

Target: I can use a balanced equation to determine the "mole ratio" between various molecules in a reaction, so that I can perform "stoichiometry" where I convert from an amount of one molecule to an amount of a totally different molecule.

Link to YouTube Presentation: https://youtu.be/FjNpLz_Wxt4

Stoichiometry Calculating the amounts of reactants and/or products that are involved in a reaction

How much do I have, need, or make?

Stoichiometry We need a balanced equation before we can do stoichiometry.

The coefficients in the balanced equation gives insight into how much of each thing we need or make

Balanced Equation Coefficients

$2H_2 + O_2 \rightarrow 2H_2O$

Can be thought of as how many molecules are needed

- 2 hydrogen molecules
- 1 oxygen molecule
- 2 water molecules

Balanced Equation Coefficients

$2H_2 + O_2 \rightarrow 2H_2O$ Can <u>ALSO</u> be thought of as how many <u>MOLES</u> of molecules

- 2 moles hydrogen molecules
- 1 moles oxygen molecule
- 2 moles water molecules

Why use Molar Coefficients and not Grams for our calculations? Allows us to compare "apples to apples"

Mole Ratios

Stoichiometry

The "KEY" to stoichiometry!

If I have 3 moles of this, how many moles of that do I have? If I have 2 moles of this, how many moles of that can I make?

Mole Ratios $2C_2H_2 + 5O_2 \rightarrow 2H_2O + 4CO_2$

Can be used as conversion factors!

How many moles of carbon dioxide can be made from 19.46 moles of oxygen gas?

Mole Ratios $2C_2H_2 + 5O_2 \rightarrow 2H_2O + 4CO_2$

Can be used as conversion factors!

If you made 13.42 moles of water, how many moles of oxygen gas did you start with?

<u>What if you don't want</u> <u>your answer in moles?</u> What if you weren't given moles?

THE MOLE HIGHWAY All roads lead to the mole!

<u>Guided Stoichiometry</u> <u>Practice Problems</u>

$N_2 + 3H_2 \rightarrow 2NH_3$ A B

54 grams $N_2 \rightarrow$? moles NH_3

Pathway: grams $A \rightarrow$ moles $A \rightarrow$ moles B

Molar mass of A <u>X q A</u> 1 mole A Mole Ratio <u>moles B</u> moles A

$N_2 + 3H_2 \rightarrow 2NH_3$ A B

54 grams $N_2 \rightarrow$? moles NH_3

Pathway: grams $A \rightarrow$ moles $A \rightarrow$ moles B

Molar mass of A <u>X q A</u> 1 mole A Mole Ratio <u>moles B</u> moles A

<u>Q #2</u>

75 grams $NH_3 \rightarrow ?gH_2$

Pathway:

grams $A \rightarrow$ moles $A \rightarrow$ moles $B \rightarrow$ grams B

 $N_2 + 3H_2 \rightarrow 2NH_3$

Α

B

Molar	Mole Ratio	Molar
mass of A	<u>moles B</u>	mass of B
<u>X g A</u>	moles A	<u>X g B</u>
1 mole A		1 mole B

LOTS of possible routes!

- Just follow the mole highway
- Use dimensional analysis
- Flip conversion factors
- Cancel units

Things don't always work perfectly...

In the lab sometimes you don't make 100% of what your stoichiometry calculation says you should make

SOMETIMES I LIE AWAKE AT NIGHT, AND I ASK, "WHERE HAVE I GONE WRONG?" THEN A VOICE SAYS TO ME, "THIS IS GOING TO TAKE MORE THAN ONE NIGHT."

Theoretical Yield

The quantities that the stoichiometry calculations predict *should* be made

<u>Actual/Experimental Yield</u>

The quantity that you <u>actually</u> made in the lab experiment

Not the same as % error!!!

Careful finding extra stuff online!

Do not do anything that says "limiting reagents" – we haven't learned that yet. Don't do problems that give you two starting values (you start with 15 grams of N₂ and 7 grams of H_2 , how much NH_3 can you make?) – that is a limiting reagent problem. We will do limiting reagents after winter break!

<u>Class Group Practice</u>

15 g sodium nitrate and excess calcium hydroxide react. How many grams of your calcium containing product can be made?

> 14.5 g Ca(NO₃)₂

<u>Class Individual Practice – timed!</u>

15 g magnesium nitrite and excess ammonium phosphate react. How many grams of your magnesium containing product can be made?

> 11.3 g Mg₃(PO₄)₂

YouTube link to presentation https://youtu.be/FjNpLz_Wxt4